首页 | 本学科首页   官方微博 | 高级检索  
     

基于统计特征的人脸识别研究
引用本文:宋海周,钱鹰. 基于统计特征的人脸识别研究[J]. 重庆邮电大学学报(自然科学版), 2011, 23(1): 121-126
作者姓名:宋海周  钱鹰
作者单位:重庆邮电大学 医学图像与信息系统研究中心,重庆 400065
基金项目:国家自然科学基金(60873186)
摘    要:奇异值特征向量是用于图像识别的有效代数特征,但直接用奇异值特征向量做匹配进行人脸识别,识别率极低。通过对人脸图像奇异值向量和其对应的左右正交特征矩阵分析,发现图像的奇异值向量与图像的灰度范围具有相关性,即最大奇异值反映了图像灰度范围的位置,其他奇异值反映了灰度范围的宽度,而且与图像奇异值向量对应的左右正交特征矩阵能够表现图像轮廓的结构信息。基此,提出基于奇异值分解(singular value distribution,SVD)的基空间人脸识别算法,并通过ORL和ORL-IC数据库进行仿真,实验结果分析证明了图像的左右正交特征矩阵能够表现图像轮廓的结构信息。

关 键 词:人脸识别;奇异值分解(SVD);特征向量;特征矩阵;基空间
收稿时间:2009-01-12

Research of face recognition based on statistical image feature
SONG Hai-zhou,QIAN Ying. Research of face recognition based on statistical image feature[J]. Journal of Chongqing University of Posts and Telecommunications, 2011, 23(1): 121-126
Authors:SONG Hai-zhou  QIAN Ying
Abstract:According to the analysis of the singular value vector of face image and left-right orthogonal characteristic matrix which corresponds to the singular value vector, the singular vectors related to image grayscale was found in the paper as follows: The maximum of the singular values presented the position of image grayscale, and other singular values showed the width of Grayscale. Moreover, it was also discovered that the left-right orthogonal characteristic matrix which corresponded to image singular value vectors could present structure information of picture contour. Finally, basis space face recognition algorithm based on SVD(singular value distribution) was proposed in order to make further certification that image left right orthogonal characteristic matrix could present structure information of picture contour, carrying on emulation in the ORL and ORL-IC database. It is concluded that the left-right orthogonal characteristic matrix can present structure information of picture contour.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号