首页 | 本学科首页   官方微博 | 高级检索  
     

基于三维卷积和CLSTM神经网络的水产养殖溶解氧预测
引用本文:查玉坤,张其林,赵永标,杭波. 基于三维卷积和CLSTM神经网络的水产养殖溶解氧预测[J]. 应用科学学报, 2021, 39(4): 615-626. DOI: 10.3969/j.issn.0255-8297.2021.04.009
作者姓名:查玉坤  张其林  赵永标  杭波
作者单位:湖北文理学院 计算机工程学院, 湖北 襄阳 441053
基金项目:中央引导地方科技发展专项资金(No.2019ZYYD043);湖北省对外科技合作项目基金(No.2019AHB059);襄阳市科技开发项目基金(No.2017AAA016);湖北省创新项目基金(No.S201910519028)资助
摘    要:提出了一种基于三维卷积和卷积长短期记忆(convolutional long short-term mem-ory,CLSTM)神经网络的水产养殖溶解氧预测模型.首先,将输入向量及其转置相乘形成一个单通道矩阵,把一定时间段内的单通道矩阵堆叠成一个立方体作为输入数据;然后,将输入数据进行连续两次三维卷积来细化溶解氧相关因...

关 键 词:三维卷积神经网络  卷积长短期记忆  水产养殖  溶解氧
收稿时间:2020-08-28

Prediction of Dissolved Oxygen in Aquaculture Based on 3D Convolution and CLSTM Neural Network
ZHA Yukun,ZHANG Qilin,ZHAO Yongbiao,HANG Bo. Prediction of Dissolved Oxygen in Aquaculture Based on 3D Convolution and CLSTM Neural Network[J]. Journal of Applied Sciences, 2021, 39(4): 615-626. DOI: 10.3969/j.issn.0255-8297.2021.04.009
Authors:ZHA Yukun  ZHANG Qilin  ZHAO Yongbiao  HANG Bo
Affiliation:School of Computer Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
Abstract:In this paper, a neural network based on three-dimensional (3D) convolution and convolutional long short-term memory (CLSTM) is proposed to predict the dissolved oxygen in aquaculture. Firstly, an input vector is multiplied by its transpose to form a single-channel matrix, and the single-channel matrices within a certain period of time are stacked to form a cube as the input data. Secondly, two consecutive three-dimensional convolutions are carried out on the input data to refine the characteristics of dissolved oxygen related factors, and the pooling layer is deleted for reducing calculation. Finally,the feature results of 3D convolution extraction are sent to the CLSTM model for further information extraction of time dimension, and the data is updated reversely by the gradient descent algorithm through the full connection layer. The actual data of a special aquaculture company in Xiangyang, Hubei Province were collected for experiment, and experimental results show that the proposed model has faster training convergence speed, higher prediction accuracy and better prediction stability than traditional BP neural network models, Conv3D and Conv2D, and could meet the needs of actual production.
Keywords:three-dimensional convolutional neural network  convolutional long short-term memory (CLSTM)  aquaculture  dissolved oxygen  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号