首页 | 本学科首页   官方微博 | 高级检索  
     

面向对象的无人机影像地物分类
引用本文:马飞虎,徐发东,孙翠羽. 面向对象的无人机影像地物分类[J]. 应用科学学报, 2021, 39(2): 312-320. DOI: 10.3969/j.issn.0255-8297.2021.02.013
作者姓名:马飞虎  徐发东  孙翠羽
作者单位:华东交通大学 土木建筑学院, 江西 南昌 330013
摘    要:为了对农村用地进行有效分类,本文选取面向对象的分类方法,利用某农村的无人机航摄影像提取其土地类别信息.首先对无人机获取的原始影像进行预处理;然后对研究区反复进行分割实验,选取最优的分割尺度,在不同层次进行最优尺度地物分割;最后根据地物矢量、光谱、形状等特征差异,对最优分割尺度层上的地物进行最适宜的分类规则的建立,进而在...

关 键 词:面向对象分类  无人机影像  多尺度分割  土地利用
收稿时间:2020-06-23

Land-Use Information of Object-Oriented Classification by UAV Image
MA Feihu,XU Fadong,SUN Cuiyu. Land-Use Information of Object-Oriented Classification by UAV Image[J]. Journal of Applied Sciences, 2021, 39(2): 312-320. DOI: 10.3969/j.issn.0255-8297.2021.02.013
Authors:MA Feihu  XU Fadong  SUN Cuiyu
Affiliation:School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang 330013, Jiangxi, China
Abstract:In order to effectively classify the rural land, an object-oriented classification method is selected to extract the land classification information of drone aerial photography images. First, original drone-taking images are preprocessed, then by repeatedly performing segmentation tests on the study area, the optimal segmentation scale of each feature is selected, with which the images are segmented at different levels. And based on feature differences in feature vector, spectrum, shape, etc., the most suitable classification rules are established for the features on the optimal segmentation scale layer. Accordingly, the land use information of each layer can be extracted. Experimental results with 734 samples for accuracy verification show that the overall classification accuracy of multi-scale and multi-level segmentation classification reaches 84.20%, and the kappa coefficient is 0.8062, whereas the overall accuracy of single-scale segmentation classification is only 77.11%, and the kappa coefficient is 0.7214. It shows that the data used in this study and the classification accuracy of the categories inside the region are higher.
Keywords:object-oriented classification  unmanned aerial vehicle image  multi-scale segmentation  land use  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号