首页 | 本学科首页   官方微博 | 高级检索  
     

拟常曲率空间的紧致极小子流形
引用本文:舒世昌. 拟常曲率空间的紧致极小子流形[J]. 陕西师范大学学报(自然科学版), 1992, 0(3)
作者姓名:舒世昌
作者单位:陕西师大数学系
摘    要:给出 QC 空间紧极小子流形全测地的截面曲率和数量曲率的 Pinching条件,推广了前人在常曲率空间的相应结果。即:k>(p—1)/((2p—1)或k>n/[2(n+1)]时 M=S_((1))~n;R>n(n—1)—n/[2—(1/p)]时,M=S_((1))~n.

关 键 词:子流形  截面曲率  黎曼曲率张量

Compact minimal submanifolds in Ricmannian manifold of quasi constant curvature
Shu Shichang. Compact minimal submanifolds in Ricmannian manifold of quasi constant curvature[J]. Journal of Shaanxi Normal University: Nat Sci Ed, 1992, 0(3)
Authors:Shu Shichang
Affiliation:Department of Mathematics
Abstract:The pinching conditions of sectional curvature and scalar curvature are given when a compact minimal submanifold in a Riemannian manifold of quasi constant curvature is a totally geodesic submanifold.A wide use is made of the Theorems put forward by formev researchers on the space as a constant curvature space form,i.e.if k>(p-1)/(2p -1)or k>[n/2(n+1)]then M=S~n(1);if R>n(n-1)-n/(2-1/p)then M=S~n(1).
Keywords:submanifold  sectional survature  Ricmannian curvature tensor  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号