首页 | 本学科首页   官方微博 | 高级检索  
     

次分数跳-扩散过程下亚式期权定价模型的数值解
引用本文:胡攀. 次分数跳-扩散过程下亚式期权定价模型的数值解[J]. 云南民族大学学报(自然科学版), 2019, 0(5): 462-469
作者姓名:胡攀
作者单位:四川文理学院数学学院
摘    要:在次分数Ho-Lee随机利率模型下,利用Δ对冲原理,建立了次分数跳-扩散过程下,带有交易费和红利支付的几何平均亚式期权定价的偏微分方程模型;通过变量代换将定价模型化为Cauchy问题;利用有限差分法和复合梯形法给出了定价模型的数值解,并通过一个算例检验了算法设计的有效性.

关 键 词:Ho-Lee随机利率模型  次分数布朗运动  跳-扩散模型  亚式期权  数值解

A numerical solution of the pricing model of Asian options under sub-fractional jump-diffusion process
Affiliation:,Department of Mathematics, Sichuan University of Arts and Science
Abstract:Under the assumption of the sub-fractional Ho-Lee stochastic interest rate model, this research firstly uses the delta hedging principle and establishes the partial differential equation of geometric average Asian options under the sub-fractional jump-diffusion process with transaction costs and dividends. Secondly, the pricing model is simplified to the Cauchy problem by using the variable substitution. Finally, a numerical solution of the pricing model is given by using the finite difference method and the composite trapezoid method. An example is also given to verify the effectiveness of the algorithm design.
Keywords:Ho-Lee stochastic interest rate model  sub-fractional Brownian motion  jump-diffusion model  Asian options  numerical solution
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号