首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征金字塔卷积循环神经网络的故障诊断方法
作者姓名:刘秀丽  徐小力
作者单位:北京信息科技大学现代测控技术教育部重点实验室
基金项目:国家自然科学基金项目(51975058);;国家重点研发计划(2020YFB1713203);
摘    要:变工况、变载荷设备部件不同故障的特征在信号中所占比例和位置不固定,且包括大量不同场景下的原始振动信号的多尺度复杂性.对此,提出一种基于特征金字塔网络(FPN)的卷积循环神经网络(CRNN)滚动轴承故障诊断方法.利用卷积神经网络(CNN)框架,并联CNN的卷积层和循环神经网络(RNN)中的长短时记忆(LSTM)层,形成新的CRNN,以充分利用CNN对空间域信息和RNN对时域信息的学习能力;在每一层中权值共享,减少网络参数;利用FPN构建全新特征图,输入一维信号和堆叠后形成的二维信号,对传感器采集的信号进行特征提取,实现故障诊断.利用行星齿轮箱进行故障试验,并进行5折交叉验证,该方法的诊断准确率平均值为99.20%,比基本神经网络模型至少高3.62%,表明该方法诊断精度高、鲁棒性强;利用凯斯西储大学轴承数据集进行验证,证明该方法具有良好的泛用性;利用t-SNE方法对模型的特征学习效果进行可视化分析,结果表明不同故障类别特征具有良好的聚类效果.

关 键 词:卷积循环神经网络  特征金字塔  故障诊断  特征可视化
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号