首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进遗传算法的工业机器人能耗最优轨迹规划
引用本文:操鹏飞,许德章,杨伟超. 基于改进遗传算法的工业机器人能耗最优轨迹规划[J]. 井冈山大学学报(自然科学版), 2016, 0(2): 48-54
作者姓名:操鹏飞  许德章  杨伟超
作者单位:安徽工程大学机械与汽车工程学院, 安徽, 芜湖 241000;芜湖安普机器人产业技术研究院有限公司, 安徽, 芜湖 241007,安徽工程大学机械与汽车工程学院, 安徽, 芜湖 241000;芜湖安普机器人产业技术研究院有限公司, 安徽, 芜湖 241007,安徽工程大学机械与汽车工程学院, 安徽, 芜湖 241000;芜湖安普机器人产业技术研究院有限公司, 安徽, 芜湖 241007
基金项目:国家自然科学基金项目(51175001)
摘    要:为了降低工业机器人在工作过程中的能耗,提出了一种能耗最优的轨迹规划方法。将机器人的轨迹视为由空间中一系列的型值点构成,每相邻的型值点间由一段五次B样条曲线连接,得出机器人的轨迹函数。以动能作为目标能耗函数,同时考虑各个关节的运动学和动力学约束。对遗传算法进行改进,用于优化目标能耗函数,此改进遗传算法提高了算法的运算效率、局部搜索能力和实时性。对优化结果进行仿真,得出各个关节的运动学参数变化曲线,分析各个关节的曲线图知其均满足运动学和动力学约束条件,验证了此优化轨迹的合理性。

关 键 词:轨迹规划  B样条曲线  工业机器人  改进遗传算法
收稿时间:2015-09-09
修稿时间:2015-10-21

ENERGY CONSUMPTION OPTIMAL PLANNING OF INDUSTRIAL ROBOT TRAJECTORIES BASED ON IMPROVED GENETIC ALGORITHM
CAO Peng-fei,XU De-zhang and YANG Wei-chao. ENERGY CONSUMPTION OPTIMAL PLANNING OF INDUSTRIAL ROBOT TRAJECTORIES BASED ON IMPROVED GENETIC ALGORITHM[J]. Journal of Jinggangshan University(Natural Sciences Edition), 2016, 0(2): 48-54
Authors:CAO Peng-fei  XU De-zhang  YANG Wei-chao
Affiliation:School of Mechanical & Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China;Anpu Institute of Technology Robotics Industry co., LTD, Wuhu, Anhui 241007, China,School of Mechanical & Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China;Anpu Institute of Technology Robotics Industry co., LTD, Wuhu, Anhui 241007, China and School of Mechanical & Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China;Anpu Institute of Technology Robotics Industry co., LTD, Wuhu, Anhui 241007, China
Abstract:In order to reduce the energy consumption in the process of industrial robot, a trajectory planning method of energy consumption optimal was proposed. The robot's trajectory was regarded as composed of a series of values point in space, each adjacent value points were connected by a period of five B-spline curves, and the trajectory of robot function was concluded. With kinetic energy as the target function of energy consumption, at the same time the constraints of kinematics and dynamics of each joint were considered. To improve the genetic algorithm for optimizing target function of energy consumption, the improved genetic algorithm improved the operation efficiency, local search ability and real time. The kinematics parameter curves of each joint were derived from the simulation of optimization results, the each joint met the kinematic and dynamic constraints through analysis of the curves of each joint and the rationality of the optimal trajectory was verified.
Keywords:trajectory planning  B-spline curve  industrial robot  improved genetic algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《井冈山大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《井冈山大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号