首页 | 本学科首页   官方微博 | 高级检索  
     

多集散点车辆路径优化的混合算法
引用本文:王素欣,高利,崔小光,曹宏美,王亚军. 多集散点车辆路径优化的混合算法[J]. 北京理工大学学报, 2007, 27(2): 130-134
作者姓名:王素欣  高利  崔小光  曹宏美  王亚军
作者单位:北京理工大学,机械与车辆工程学院,北京,100081;北京中软国际信息技术有限公司,北京,100081
摘    要:为使多集散点车辆路径优化结果全局最优,以订单为基准建立多集散点车辆路径优化模型.采用粒子群算法与改进蚁群算法组成的混合优化算法求解模型.由粒子群算法的粒子位置向量得到每辆车所需运送的订单号,用蚁群算法优化单车路径,根据优化的总路径评价和筛选粒子,直到满足终止条件.该模型和混合算法是所有车辆对所有订单节点的路径优化,突破了多仓库问题直接或间接转化为多个单仓库车辆路径优化问题中的局部节点求解的限制.实例求解结果表明,用该混合算法优化的车辆总路径长度小于用蚁群算法求得的结果.

关 键 词:多集散点  车辆路径问题  粒子群算法  蚁群算法
文章编号:1001-0645(2007)02-0130-05
收稿时间:2006-09-01
修稿时间:2006-09-01

Hybrid Algorithm on Multi-Depots Vehicle Routing Problem
WANG Su-xin,GAO Li,CUI Xiao-guang,CAO Hong-mei and WANG Ya-jun. Hybrid Algorithm on Multi-Depots Vehicle Routing Problem[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2007, 27(2): 130-134
Authors:WANG Su-xin  GAO Li  CUI Xiao-guang  CAO Hong-mei  WANG Ya-jun
Affiliation:1. School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Beijing China Soft International Information Technology Ltd., Beijing 100081, China
Abstract:In order to reach a global optimization in multi-depots vehicle routing,vehicle routing models based on detail order information were established.Hybrid algorithm was composed of particle swarm optimization(PSO) and improved ant colony optimization(ACO).Order numbers for vehicles to freight were got by particle position vector,single vehicle route was got by ACO,and then evaluated and filtered particales according to optimal vehicle routes,circulated until terminate qualification.By optimizing all vehicles routing to all orders,the model and hybrid algorithm solves the problem of searching local optimal solution in the procedure so that multi-depots transform to many single depots.Illustration results showed vehicle route length by the hybrid algorithm to be less than ant colony optimization.
Keywords:multi-depots  vehicle routing problem  particle swarm algorithm  ant colony algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号