首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的水轮发电机组振动故障诊断专家系统的研究
引用本文:刘峰,杨晓萍,刘晓黎,贾嵘. 基于神经网络的水轮发电机组振动故障诊断专家系统的研究[J]. 西安理工大学学报, 2003, 19(4): 372-376
作者姓名:刘峰  杨晓萍  刘晓黎  贾嵘
作者单位:1. 西安理工大学,水利水电学院,陕西,西安,710048
2. 西安理工大学,水利水电学院,陕西,西安,710048;甘肃河西水电发展有限责任公司
摘    要:针对神经网络的缺陷和水轮发电机组振动故障原因多、征兆多的特点,利用网络分块技术,把BP网络规模控制在可以接受的范围内,并将专家系统与神经网络相结合,较好地解决了知识获取和自学习的问题。通过实例验证,该网络模型能有效地分离各种故障类型,在水轮发电机组振动故障诊断中具有一定的诊断能力。

关 键 词:专家系统 神经网络 水轮发电机组 振动 故障诊断
文章编号:1006-4710(2003)04-0372-05
修稿时间:2003-01-05

Research on Fault Diagnosis of Expert System for Turbine Generator Unit Vibration Unit Based on Neural Network
LIU Feng,YANG Xiao-ping,LIU Xiao-li,JIA Rong. Research on Fault Diagnosis of Expert System for Turbine Generator Unit Vibration Unit Based on Neural Network[J]. Journal of Xi'an University of Technology, 2003, 19(4): 372-376
Authors:LIU Feng  YANG Xiao-ping  LIU Xiao-li  JIA Rong
Abstract:Noticing multi-fault cause and multi-sign of turbine-generator unit vibration, and combining expert system with neural network, this paper solve the problem of knowledge acquisition and self-study. To overcome the fault of neural network, partition of network technique is used to control BP network scale in acceptable range. It has been proved via the practical example tests that this system can effectively separate each fault type from each other and that it has a definite diagnostic ability in turbine-generator unit vibration fault-diagnosis.
Keywords:expert system  neural network  turbine-generator unit  vibration  fault diag-nosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号