首页 | 本学科首页   官方微博 | 高级检索  
     

激光加工机器人标定的神经网络法
引用本文:王东署,迟健男. 激光加工机器人标定的神经网络法[J]. 系统仿真学报, 2006, 18(10): 2998-3002
作者姓名:王东署  迟健男
作者单位:1. 郑州大学电气工程学院,河南,郑州,450001
2. 北京科技大学信息工程学院,北京,100083
基金项目:国家高技术研究发展计划(863计划)
摘    要:在分析原有机器人误差标定方法的基础上,给出了两种误差标定的神经网络法,并对激光加工机器人进行了精确标定。第一种方法通过前馈神经网络与机器人理想运动学模型结合,可把机器人位姿误差降低到初始值的1/5左右;第二种方法把前馈神经网络与标定好的实际运动学模型结合,进行神经网络-参数法混合位姿标定,并与参数法标定结果进行了对比。仿真结果表明后一种方法可以进一步提高机器人的位姿精度,且可以对参数模型中没有涉及到的因素进行补偿,方法简单且标定效果更好。

关 键 词:机器人  位姿误差  神经元网络  标定
文章编号:1004-731X(2006)10-2998-05
收稿时间:2005-08-03
修稿时间:2005-12-15

Calibration of Laser Processing Robot by Neural Network
WANG Dong-shu,CHI Jian-nan. Calibration of Laser Processing Robot by Neural Network[J]. Journal of System Simulation, 2006, 18(10): 2998-3002
Authors:WANG Dong-shu  CHI Jian-nan
Affiliation:1. Electrical Engineering School of Zhengzhou University, Henan Zhengzhou 450001, China; 2. Information Engineering School of University of Science and Technology Beijing, Beijing 100083, China
Abstract:Based on the analysis of the traditional robot calibration methods, two neural network calibration methods used to calibrate the laser-processing robot were proposed. The first one combines a feed-forward neural network with the nominal kinematic model of the robot to be calibrated; which can reduce the pose error to 1/5 of initial value; and the second variant combines a feed-forward neural network with an already calibrated parametrical kinematic model of the robot. The latter reaches a higher performance. The presence of the neural network permits the compensation of several effects, even those not considered by the parametrical model. Calibration results were compared with those obtained by traditional parametric methodologies. Simulation results show that presented methods significantly improve and achieve better calibration effect.
Keywords:robot  pose error  neural network  calibration  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号