首页 | 本学科首页   官方微博 | 高级检索  
     

自适应变异粒子群算法在交通控制中的应用
引用本文:付绍昌,黄辉先,肖业伟,吴翼,王宸昊. 自适应变异粒子群算法在交通控制中的应用[J]. 系统仿真学报, 2007, 19(7): 1562-1564,1612
作者姓名:付绍昌  黄辉先  肖业伟  吴翼  王宸昊
作者单位:湘潭大学信息工程学院,湖南,411105
基金项目:校跨学科博士基金;智能像卡及其联网系统研究项目
摘    要:提出了自适应粒子群算法结合实数遗传算法中变异算子的混合算法,它能提高算法的收敛性和稳定性。同时,通过对交通路口的通行情况的研究提出了一种新颖的离散交通信号控制模型。此模型以交叉路口各方向车流支路为基本单元,以各支路车流信息为输入,得出交通信号控制的各项性能指标。在此模型的基础上,应用自适应变异粒子群算法实现交通信号优化控制及验证算法。仿真结果表明自适应变异粒子群算法能够有效实现交通信号优化控制。

关 键 词:粒子群优化算法  实数编码遗传算法  变异算子  智能交通系统
文章编号:1004-731X(2007)07-1562-03
收稿时间:2006-02-20
修稿时间:2006-02-202006-06-22

Application of Adaptive Mutation- particle Swarm Optimization Algorithm in Traffic Control
FU Shao-chang,HUANG Hui-xian,XIAO Ye-wei,WU Yi,WANG Chen-hao. Application of Adaptive Mutation- particle Swarm Optimization Algorithm in Traffic Control[J]. Journal of System Simulation, 2007, 19(7): 1562-1564,1612
Authors:FU Shao-chang  HUANG Hui-xian  XIAO Ye-wei  WU Yi  WANG Chen-hao
Affiliation:Institute of Information Engineering, Xiangtan University, Xiangtan 411105, China
Abstract:A hybrid algorithm, which combines mutation operator in real-code genetic algorithm with adaptive particle swarm optimization algorithm (AMPSOA), was proposed. The new method increases its convergence rate and stability. A novel discrete model of traffic signal control was proposed based on the research of the situation of an intersection. It is composed of branches of each direction of an intersection. According to the discrete input information of traffic flow in each branch of each direction, the performance indexes of traffic signal control can be achieved. Based on the model, the method can be applied to the optimal control of traffic signal and examined. Simulation demonstrates the effectiveness of the AMPSOA which can realize the optimal control of in traffic signal.
Keywords:PSO   real-code genetic algorithm   mutation operator   ITS
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号