摘 要: | 为了解决岩溶区不同溶蚀程度灰岩合理、高效识别问题,以桂林七星区灰岩为研究对象,开展不同pH、不同循环次数的酸性干湿循环试验,构建不同溶蚀程度灰岩识别的卷积神经网络模型(CNN),分析不同pH值、不同循环次数对模型识别效果的影响,探讨样本数量、网络参数设置对模型影响的敏感性.研究表明,伴随酸液pH值的降低、干湿循环次数的增加,岩样表面溶蚀纹路及溶蚀产生的孔隙越明显,模型分类准确率越高;学习样本、预测样本数量较小时,准确率随着样本数量增加而增高,当学习样本、预测样本数量接近4∶1时,模型预测效果最佳,随后准确率随着样本数量增加而降低;模型对不同网络参数敏感性不同,学习率为0.1,迭代次数与样本更新数为50时,准确率最高.CNN模型预测准确率最高为97.6%,为岩溶区灰岩溶蚀程度有效识别提供一条新途径.
|