摘 要: | 设I=[0,1],它在数直线中的相对拓扑记为,我们称乘积诱导不分明拓扑空间(I,F_(θ×θ_I)为乘积诱导不分明单位区间,记为ω[0,1]。定义1 不分明拓扑空间(X,F)叫做不分明完全正则的,当且仅当对任一不分明开集A∈F和任一点P_(x_0)~α∈A,都有一个不分明连续映像T:(X,F)→ω[0,1],使得T(x_0)=0,T[X~~υ_α(A)]={1}。这里υ_α(A)=U{U:P_(x_0)~α∈N_U~βA},N_U~β是点P_(x_0)~α的邻域胚。不难看出,当α<1时,对任何A∈F都有υ_α(A)=σ_α(A),即A的强α—截割。定理1 若不分明拓扑空间(X,F)是不分明完全正则的,则它一定是拓扑生成的,也就
|