首页 | 本学科首页   官方微博 | 高级检索  
     

黎曼流形上布朗运动的常返性
引用本文:吴春章. 黎曼流形上布朗运动的常返性[J]. 厦门大学学报(自然科学版), 1989, 28(2): 121-126
作者姓名:吴春章
作者单位:厦门大学数学系
基金项目:福建省自然科学基金资助项目
摘    要:研究黎曼流形上布朗运动的常返和非常返状态(二者统称常适性),证明了在具非负Ricci曲率的完备黎曼流形上互斥律成立,得到布朗运动常返和非常返的充要条件;并讨论了黎曼曲面上布朗运动的常返性,给出黎曼曲面上布朗运动常返的一个判别准则。

关 键 词:流形  布朗运动  常返  非常返

Recurrence and Transience of Brownian Motion on Ricmannian Manifolds
Wu Chunzhang. Recurrence and Transience of Brownian Motion on Ricmannian Manifolds[J]. Journal of Xiamen University(Natural Science), 1989, 28(2): 121-126
Authors:Wu Chunzhang
Affiliation:Dept. of Math.
Abstract:The recurrence and transience of Brownian motion on Rie mannian manifolds were considered. The first part of the paper was set out to prove that alternative is true on complete Riemannian manifolds with non-negative Ricci curvature and to acquire the condition in which Brownian motion is recurrent. The second part was to obtain the sufficient and necessary condition for Brownian motion being recurrent on Riemann surfaces.
Keywords:Manifolds   Brownian motion   Recurrence  Transience
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号