首页 | 本学科首页   官方微博 | 高级检索  
     

SAX结合Adaboost算法的时间序列分类问题
作者单位:;1.郑州大学信息工程学院
摘    要:SAX是一种典型的符号化特征表示方法.该方法在时间序列特征表示中不仅可以有效地降维、降噪,而且具有简单、直观等特点.时间序列长度不一、特征表示过程中信息损失等问题的存在,使得常规的分类算法难以很好地完成分类任务.在对时间序列数据进行基于SAX符号化的BOP表示方法的基础上,提出了结合集成学习中AdaBoost算法进行分类的新方法,实验结果表明,该方法不仅能很好地处理SAX符号化表示中的信息损失问题,而且与已有方法相比,在分类准确度方面也有了显著的提高.

关 键 词:时间序列  分类  SAX  BOP  AdaBoost

Research on Time Series Data Classification Combine SAX and AdaBoost Algorithm
Affiliation:,School of Information Engineering,Zhengzhou University
Abstract:Symbolic Aggregate approXimation(SAX)is a typical symbolic representation method,which is straight-forward and very simple,and it efficiently converts time series data to a symbolic representation with dimension reduction.The issues of time series data such as variable in length,and information lose during the representation,making many traditional classification methods unable to apply directly.This paper focus on the SAX discretization method coupled with the Bag of Patterns(BOP)representation in classification task,and proposed the new approach by use AdaBoost Algorithm to remedy the information loss by SAX representation.The experimental results show that,the approach improved the classification accuracy obviously.
Keywords:time series  classification  SAX  BOP  AdaBoost
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号