首页 | 本学科首页   官方微博 | 高级检索  
     

闭区域上微分包含的弱Filippov定理
引用本文:许宏文,薛小平. 闭区域上微分包含的弱Filippov定理[J]. 黑龙江大学自然科学学报, 2009, 26(2)
作者姓名:许宏文  薛小平
作者单位:哈尔滨工业大学,数学系,哈尔滨,150001;哈尔滨工业大学,数学系,哈尔滨,150001
摘    要:考虑变元x约束在闭区域 -Ω上的微分包含的初值问题.对给定的有约束微分包含x'∈F(t,x)的初值问题x(to)=xo 的一个定义在[to,+∞)的AC解及任意的点yo ∈-Ω,证明了存在一个该约束微分包含的满足初始条件yo的定义在[to,+∞)的PC解y(·)且满足|x(t)-y(t)|≤Ceξ(t-to)|xo-yo|,这里F满足单边Lipschitz条件,Ω满足一致内球条件.

关 键 词:Filippov定理  单边Lipschitz条件  PC解  一致内球条件

Weak Filippov's theorem of differential inclusions on closed domains
XU Hong-wen,XUE Xiao-ping. Weak Filippov's theorem of differential inclusions on closed domains[J]. Journal of Natural Science of Heilongjiang University, 2009, 26(2)
Authors:XU Hong-wen  XUE Xiao-ping
Affiliation:Department of Mathematics;Harbin Institute of Technology;Harbin 150001;China
Abstract:The initial value problem of the differential inclusion x'∈F(t,x) is investigated,wherethe variable x is constrained to a closed domain -Ω.It is shown that given yo ∈-Ω and an AC solution x |x(t)-y(t)|≤Ceζ(t-to)|xo-yo|,when F is one-side Lipschitz continuous.Ω satisfies the Uniform Internal Sphere Condition.
Keywords:Filippov'S theorem  one-side Lipschitz condition  PC solution  uniform internal sphere condition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号