摘 要: | 针对蚁群系统(Ant Colony System,ACS)算法存在收敛速度慢、路径不平滑、易陷入局部最优等缺点,提出了一种基于万有引力搜索策略的ACS算法.为了解决算法初期由于地图信息匮乏,导致蚁群寻路盲目性较大的问题,提出了简化ACS算法对初始信息素浓度进行更新.引入万有引力算法搜索策略,提升了算法收敛速度,且有效解决了局部最优问题.对每次迭代获取到的最优路径进行优化,减少了路径的转折点数量、提升了路径平滑性.仿真试验表明,改进算法能够有效提升算法的收敛速度、路径平滑性.将改进算法应用到实际的移动机器人导航试验中,试验结果表明,改进算法能够有效解决移动机器人的路径规划问题,且有效提升移动机器人的导航效率.
|