摘 要: | 细菌耐药性的日益加剧,以及目前的耐药性检测方法周期长等问题,给临床第一时间准确用药带来极大的挑战和困境.为此,本文将探索深度学习技术在抗菌药物耐药性预测中的应用,提出一种融合注意力机制的双通道卷积神经网络模型,通过上下两个通道对建模后的送检数据做不同粒度的特征提取,每个通道经过卷积和池化后引入注意力机制,聚焦重要的特征信息,而后将两个通道的特征进行融合,从而完成分类输出.将模型在某三甲医院细菌药敏检测历史数据集上,与多种不同方法进行对比实验,结果表明,本文所提出方法在分类准确度F值指标中平均实现20.35%的提升,同时在小样本分类上表现出更好的效果.
|