首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Resonant quantum transitions in trapped antihydrogen atoms
Authors:Amole C  Ashkezari M D  Baquero-Ruiz M  Bertsche W  Bowe P D  Butler E  Capra A  Cesar C L  Charlton M  Deller A  Donnan P H  Eriksson S  Fajans J  Friesen T  Fujiwara M C  Gill D R  Gutierrez A  Hangst J S  Hardy W N  Hayden M E  Humphries A J  Isaac C A  Jonsell S  Kurchaninov L  Little A  Madsen N  McKenna J T K  Menary S  Napoli S C  Nolan P  Olchanski K  Olin A  Pusa P  Rasmussen C Ø  Robicheaux F  Sarid E  Shields C R  Silveira D M  Stracka S  So C  Thompson R I  van der Werf D P  Wurtele J S
Institution:Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3, Canada.
Abstract:The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号