首页 | 本学科首页   官方微博 | 高级检索  
     

混合粒子群算法在柔性工作车间调度中的应用
引用本文:贾兆红,陈华平,孙耀晖. 混合粒子群算法在柔性工作车间调度中的应用[J]. 系统仿真学报, 2007, 19(20): 4743-4747
作者姓名:贾兆红  陈华平  孙耀晖
作者单位:1. 中国科学技术大学信息管理与决策科学系,合肥,230026;安徽大学计算机科学与技术学院,合肥,230039
2. 中国科学技术大学信息管理与决策科学系,合肥,230026
基金项目:国家自然科学基金;安徽省自然科学基金;中国科技大学校科研和教改项目
摘    要:混沌是一种新颖的优化技术,具有随机性、遍历性的特点和易跳出局部极值的能力。为了提高粒子群优化算法(PSO)的性能,在PSO中引入混沌,优势互补,提出了一种混合PSO算法,并应用于柔性工作车间调度问题的求解。首先基于混沌对PSO的参数进行自适应优化,实现全局搜索与局部搜索间的有效平衡;然后,在PSO的搜索过程中引入混沌局部搜索策略,来提高解的精度和收敛速度。实验比较结果验证了该算法的全局搜索性能。

关 键 词:混沌  粒子群优化  柔性工作车间调度  遗传算法(GA)
文章编号:1004-731X(2007)20-4743-05
收稿时间:2006-08-22
修稿时间:2006-12-11

Hybrid Particle Swarm Optimization for Flexible Job-Shop Scheduling
JIA Zhao-hong,CHEN Hua-ping,SUN Yao-hui. Hybrid Particle Swarm Optimization for Flexible Job-Shop Scheduling[J]. Journal of System Simulation, 2007, 19(20): 4743-4747
Authors:JIA Zhao-hong  CHEN Hua-ping  SUN Yao-hui
Affiliation:1. Department of Information Management and Decision Science, University of Science and Technology of China, Hefei 230026, China; 2. Department of Computer Science and Engineering, Anhni University, Hefei 230039, China
Abstract:As a new optimization technique, chaos bears randomicity, ergodicity and the superiority of escaping from a local optimum. By integrating the advantage of Chaos and PSO, a hybrid particle swarm optimization (HPSO) algorithm was proposed and applied to solving the flexible job-shop scheduling problem (FJSP). Parameters of PSO were adaptively chaotic optimized to efficiently balance the exploration and exploitation abilities. During the search process of PSO, the chaotic local optimizer was introduced to raise its resulting precision and convergence rate. The global search performance of HPSO was validated by the results of the comparative experiments.
Keywords:chaos  particle swarm optimization  flexible job shop scheduling  genetic algorithm (GA)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号