首页 | 本学科首页   官方微博 | 高级检索  
     

三角代数上Lie积为平方零元的非线性Jordan高阶可导映射
引用本文:费秀海,戴磊,朱国卫. 三角代数上Lie积为平方零元的非线性Jordan高阶可导映射[J]. 山东大学学报(理学版), 2019, 54(12): 50-58. DOI: 10.6040/j.issn.1671-9352.0.2019.100
作者姓名:费秀海  戴磊  朱国卫
作者单位:1. 滇西科技师范学院数理学院, 云南 临沧 677099;2. 渭南师范学院数学与统计学院, 陕西 渭南 714099
摘    要:设U是一个 2-无挠的三角代数,D ={dn}n∈N是U上一个Lie积为平方零元的非线性Jordan高阶可导映射。证明了三角代数U上的每一个Lie积为平方零元的非线性Jordan高阶可导映射都是高阶导子。作为结论的应用,得到套代数或 2-无挠的上三角分块矩阵代数上的每一个Lie积为平方零元的非线性Jordan高阶可导映射都是高阶导子。

关 键 词:三角代数  高阶导子  Jordan 高阶导子  平方零元  

Nonlinear Jordan higher derivable maps on triangular algebras by Lie product square zero elements
FEI Xiu-hai,DAI Lei,ZHU Guo-wei. Nonlinear Jordan higher derivable maps on triangular algebras by Lie product square zero elements[J]. Journal of Shandong University, 2019, 54(12): 50-58. DOI: 10.6040/j.issn.1671-9352.0.2019.100
Authors:FEI Xiu-hai  DAI Lei  ZHU Guo-wei
Affiliation:1. School of Mathematics and Physics, Dianxi Science and Technology Normal University, Lincang 677099, Yunnan, China;2. School of Mathematics and Statistics, Weinan Normal University, Weinan 714099, Shaanxi, China
Abstract:Let U be a 2-torsion free triangular algebra, D={dn}n∈N is a nonlinear Jordan higher derivable map on triangular algebra U by Lie product square zero elements. In this paper, it is shown that every nonlinear Jordan higher derivable map on triangular algebra U by Lie product square zero elements is a higher derivation. As its application, we get that every nonlinear Jordan higher derivable map on a nest algebra or a 2-torsion free block upper triangular matrix algebra U by Lie product square zero elements is a higher derivation.
Keywords:triangular algebra  higher derivation  Jordan higher derivation  square zero element  
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号