首页 | 本学科首页   官方微博 | 高级检索  
     

基于 VAR 模型的重庆市大气污染物分析及研究
引用本文:安 军,王 丹a. 基于 VAR 模型的重庆市大气污染物分析及研究[J]. 重庆工商大学学报(自然科学版), 2023, 40(5): 72-80
作者姓名:安 军  王 丹a
作者单位:重庆工商大学 a. 数学与统计学院; b. 重庆市社会经济和应用统计重点实验室,重庆 400067
摘    要:目的 研究重庆市首要空气污染物 PM2. 5 与 PM10 、SO2 、NO2 、CO、O3 的动态影响关系,为政府制定防治大气污染措施及相关政策提供有价值的建议。 方法 收集重庆市 2021-05-01—2021-10-31 日的 PM2. 5 、PM10 、SO2 、NO2 、CO、O3 这 6 项大气污染物的日浓度数据,利用 Eviews8. 0 软件,对原始数据进行序列平稳性检验;根据Granger 因果检验结果选择变量,建立时间序列 VAR 模型,并检验模型的稳定性;利用广义脉冲响应分析和方差分解分析,研究各污染物浓度对 PM2. 5 的动态影响及相对重要性。 结果 Granger 因果检验表明:PM10 、SO2 、NO2 、O3是 PM2. 5 的 Granger 原因, CO 不是 PM2. 5 的 Granger 原因;广义脉冲响应分析表明:NO2 对 PM2. 5 的影响最大;方差分解分析表明:NO2 的浓度对 PM2. 5 的影响最大;O3 对 PM2. 5 的影响次之,对 SO2 的影响作用最小。 所以,从长期影响效应看,NO2 对 PM2. 5 具有长期较大的影响,SO2 对 PM2. 5 的影响最弱。 结论 防治 PM2. 5 对重庆市空气的污染应着重控制 NO2 的污染,因此,政府应大力发展绿色交通,控制交通污染;大力监管高污染行业,将烟雾、粉尘、颗粒物等排放量较大的行业作为工业污染源治理的重点;大力发展清洁能源,加快化石燃料替代资源的开发利用。

关 键 词:PM2. 5   VAR 模型  广义脉冲响应  方差分解分析

Analysis and Study of Air Pollutants in Chongqing Based on VAR Models
AN Jun,WANG Dana. Analysis and Study of Air Pollutants in Chongqing Based on VAR Models[J]. Journal of Chongqing Technology and Business University:Natural Science Edition, 2023, 40(5): 72-80
Authors:AN Jun  WANG Dana
Affiliation:a. School of Mathematics and Statistics b. Chongqing Key Laboratory of Social Economic and Applied Statistics Chongqing Technology and Business University Chongqing 400067 China
Abstract:Objective The dynamic impact relationships between PM2. 5 the primary air pollutants in Chongqing andPM10 SO2 NO2 CO and O3 were studied to provide valuable suggestions for the government to formulate air pollutionprevention and control measures and related policies. Methods The daily concentration data of PM2. 5 PM10 SO2 NO2CO and O3 were collected from May 1 2021 to October 31 2021 in Chongqing and the original data were tested forsequence stationarity using software of Eviews 8. 0. Variables were selected based on the results of Granger causality tests time series VAR models were developed and the stability of the models was tested. Generalized impulse response analysisand variance decomposition analysis were used to investigate the dynamic effects and relative importance of each pollutantconcentration on PM2. 5. Results The results of the Granger causality test showed that PM10 SO2 NO2 and O3 were theGranger causes of PM2. 5 and CO was not the Granger cause of PM2. 5. Generalized impulse response analysis showed thatNO2 had the greatest effect on PM2. 5. Variance decomposition analysis showed that the concentration of NO2 had the largest effect on PM2. 5 O3 had the second largest effect on PM2. 5 and SO2 had the smallest effect. Therefore in terms ofthe long-term effect NO2 has a large long-term effect on PM2. 5 while SO2 has the weakest effect on PM2. 5. ConclusionThe prevention and control of PM2. 5 pollution in the air in Chongqing should focus on controlling NO2 pollution. Therefore the government should vigorously develop green traffic and control traffic pollution vigorously supervise and regulate highpolluting industries and make industries with high emissions of smoke dust and particulate matter the focus of industrialpollution source governance and vigorously develop clean energy and accelerate the development and utilization ofalternative fossil fuel resources.
Keywords:PM2. 5   VAR model   generalized impulse response   analysis of variance decomposition
点击此处可从《重庆工商大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆工商大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号