首页 | 本学科首页   官方微博 | 高级检索  
     

采用互补特征的核相关滤波目标跟踪算法
引用本文:谢维波,夏远祥,刘文. 采用互补特征的核相关滤波目标跟踪算法[J]. 华侨大学学报(自然科学版), 2018, 0(3): 429-434. DOI: 10.11830/ISSN.1000-5013.201611030
作者姓名:谢维波  夏远祥  刘文
作者单位:华侨大学 计算机科学与技术学院, 福建 厦门 361021
摘    要:为了改善跟踪算法的性能,提出一种自适应加权的融合颜色特征和方向梯度直方图(HOG)特征的多核多通道的相关滤波跟踪算法.针对核相关滤波算法特征单一的问题,采用互补特征核空间描述目标,并根据互补特征响应值的大小,自适应为互补特征核空间分配权重、更新模型,提高算法的鲁棒性.实验结果表明:所提出的算法不仅能在一定程度上处理目标外观变化问题,而且完全满足跟踪场景的实时需求.

关 键 词:目标跟踪算法  核相关滤波  互补特征  自适应权重  颜色特征  方向梯度直方图特征

Target Tracking Algorithm Using Complementary Features of Kernelized Correlation Filter
XIE Weibo,XIA Yuanxiang,LIU Wen. Target Tracking Algorithm Using Complementary Features of Kernelized Correlation Filter[J]. Journal of Huaqiao University(Natural Science), 2018, 0(3): 429-434. DOI: 10.11830/ISSN.1000-5013.201611030
Authors:XIE Weibo  XIA Yuanxiang  LIU Wen
Affiliation:College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
Abstract:In order to improve the performance of tracking algorithm, a correlation filter tracking algorithm with multi-kernel and multi-channel using an adaptive weighted fusion method based on color feature and histogram of oriented gradient(HOG)feature is proposed. As kernelized correlation filter can extract few features, this algorithm presents target appearance by using complementary kernel features. According to the magnitude of the response values of the complementary features, the weights of the complementary kernel features and updating model are adaptively assigned, improving the robustness of the algorithm. The results of experiments show that the proposed algorithm not only can handle changes of object’s appearance, but also completely meet the tracking demand of real-time scenario.
Keywords:target tracking algorithms  kernel correlation filter  complementary features  adaptive weights  color feature  histogram of oriented gradient feature
本文献已被 CNKI 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号