首页 | 本学科首页   官方微博 | 高级检索  
     

采用邻域关联性的非监督流形对齐算法
引用本文:徐猛,王靖,杜吉祥. 采用邻域关联性的非监督流形对齐算法[J]. 华侨大学学报(自然科学版), 2018, 0(2): 256-261. DOI: 10.11830/ISSN.1000-5013.201601015
作者姓名:徐猛  王靖  杜吉祥
作者单位:华侨大学 计算机科学与技术学院, 福建 厦门 361021
摘    要:假设对于两个流形上关联性较强的样本点,其邻域点之间也会具有较强的关联性.基于此假设,提出一种新的非监督流形对齐算法,通过学习局部邻域之间的关联性,挖掘不同流形样本点间的关联性;然后,将两个流形样本点投影到共同的低维空间,同时保持所挖掘的关联性.结果表明:与传统的非监督流形对齐算法比较,文中算法能更准确地找出不同流形数据在低维空间的匹配点.

关 键 词:流形对齐  关联性  局部邻域  非监督

Unsupervised Manifold Alignment Algorithm Using Neighborhood Correlation
XU Meng,WANG Jing,DU Jixiang. Unsupervised Manifold Alignment Algorithm Using Neighborhood Correlation[J]. Journal of Huaqiao University(Natural Science), 2018, 0(2): 256-261. DOI: 10.11830/ISSN.1000-5013.201601015
Authors:XU Meng  WANG Jing  DU Jixiang
Affiliation:College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
Abstract:This paper propose a basic assumption: for the points sampled from two manifolds which have strong correlations, their neighbors also have stronger correlations. Based on this assumption, this paper propose a new unsupervised manifold alignment algorithm which using the local neighborhood correlation to construct the relationship between the data sample points from different manifolds, and then projecting two manifold data to a common low-dimensional space while preserve the discovering of the correlation. The numerical experiments show that compared with the traditional unsupervised manifold alignment algorithms, this proposed algorithm can find the matching points of different manifold data in the low-dimensional space more accurately.
Keywords:manifold alignment  correlation  local neighborhood  unsupervised
本文献已被 CNKI 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号