首页 | 本学科首页   官方微博 | 高级检索  
     

四阶常微分方程的Birkhoff配点法
引用本文:庄清渠,王金平. 四阶常微分方程的Birkhoff配点法[J]. 华侨大学学报(自然科学版), 2018, 0(2): 306-311. DOI: 10.11830/ISSN.1000-5013.201707005
作者姓名:庄清渠  王金平
作者单位:华侨大学 数学科学学院, 福建 泉州 362021
摘    要:提出求解四阶常微分方程的Birkhoff配点法.通过构造满足边界条件的Birkhoff插值基函数,得到具有稳定条件数的代数方程组.在数值算例中,通过与一类Legendre 配点法的数值结果进行比较.结果表明:Birkhoff配点法的有效性和高精度.

关 键 词:四阶常微分方程  Birkhoff配点法  Legendre配点法  代数方程组

Birkhoff Collocation Method for Fourth-Order Ordinary Differential Equations
ZHUANG Qingqu,WANG Jinping. Birkhoff Collocation Method for Fourth-Order Ordinary Differential Equations[J]. Journal of Huaqiao University(Natural Science), 2018, 0(2): 306-311. DOI: 10.11830/ISSN.1000-5013.201707005
Authors:ZHUANG Qingqu  WANG Jinping
Affiliation:School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
Abstract:The paper presents a Birkhoff collocation method for solving the fourth-order differential equation. The Birkhoff interpolation basis functions satisfying the boundary conditions are constructed, which leads to algebraic equations with stable condition numbers. Numerical results indicate that the Birkhoff collocation method is of high accuracy and effectiveness comparing with a kind of Legendre collocation method.
Keywords:fourth-order ordinary differential equation  Birkhoff collocation method  Legendre collocation method  algebraic equation
本文献已被 CNKI 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号