首页 | 本学科首页   官方微博 | 高级检索  
     

基于谱约简的变结构模糊神经网络
引用本文:张高煜,赵恒,杨万海. 基于谱约简的变结构模糊神经网络[J]. 系统工程与电子技术, 2005, 27(11): 1903-1906
作者姓名:张高煜  赵恒  杨万海
作者单位:西安电子科技大学电子工程学院,陕西,西安,710071
摘    要:在先验知识不完备和不确定的情况下,针对海量数据造成的冗余和互斥,模糊神经网络结构变得复杂化且不能很快逼近和分类输出对象的情况,提出了一种基于高阶谱规则约简的变结构模糊神经网络模型。相同结论属性的模糊规则的条件属性值,可以被认为是由若干个谐波组成的平稳信号,并且此信号可以采用高阶谱分析来估计其谐波成分,规则的最小约简集与谐波对应。在完成了谐波估计后,神经网络结构和连接权值发生改变,神经网络的性能也得到优化。最后给出了此模型在航迹融合中应用的一个例子,得到了较好的结果。

关 键 词:变结构  模糊神经网络  谱约简  信息融合
文章编号:1001-506X(2005)11-1903-04
修稿时间:2005-01-06

Structure changed fuzzy neural network based on spectral reduction
ZHANG Gao-yu,ZHAO Heng,YANG Wan-hai. Structure changed fuzzy neural network based on spectral reduction[J]. System Engineering and Electronics, 2005, 27(11): 1903-1906
Authors:ZHANG Gao-yu  ZHAO Heng  YANG Wan-hai
Abstract:With the structure of FNN turning more complex,the good approach or classification is hard to get because of redundancy and uncertainty caused by both large volume uncertain data and lack of prior knowledge.Based on high order spectral reduction for rulers,a new structure changed fuzzy neural network(SCFNN) is proposed.The value of condition attribute in fuzzy rulers having same result can be considered as a statistical signal set composed by several harmonics,and the signal can be analyzed using high order statistics to estimate the harmonics.The minimum reduction set of rulers is corresponded to the harmonics.Then the structure and the joint weight of FNN could be changed after harmonics estimation.The performance of SCFNN is also optimized.Finally,the model is used in track-to-track fusion and a good result is obtained.
Keywords:structure changed  FNN  spectral reduction  information fusion
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号