首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯混合密度模型的医学图像聚类方法
引用本文:宋余庆,王春红,陈健美,谢从华. 基于高斯混合密度模型的医学图像聚类方法[J]. 江苏大学学报(自然科学版), 2009, 30(3)
作者姓名:宋余庆  王春红  陈健美  谢从华
作者单位:江苏大学,计算机科学与通信工程学院,江苏,镇江,212013;常熟理工学院,计算机科学与工程学院,江苏,常熟,215500
摘    要:研究了医学图像的聚类问题,提出一种基于高斯混合密度模型的K-EM聚类算法,并将此算法用于人体腹部图像数据,实现肝、肾、脾等主要器官的分类.在算法中,随机选取腹部图像像素数据,用QAIC信息准则确定训练样本的最佳类别数;用K均值聚类算法得到混合模型的初始参数;用期望最大(EM)算法多次迭代建立腹部图像数据的混合密度模型;运用贝叶斯准则,将腹部图像所有像素值划分到混合模型中相应的模型分支,得到每个器官像素值划分的正确率与误判率.试验结果表明,新算法分类的平均正确率高于85%、误判率低于10%,优于K均值算法.

关 键 词:医学图像  K均值聚类  高斯混合模型  QAIC信息准则  EM算法  贝叶斯准则

Clustering of medical image based on Gaussian mixture density model
Song Yuqing,Wang Chunhong,Chen Jianmei,Xie Conghua. Clustering of medical image based on Gaussian mixture density model[J]. Journal of Jiangsu University:Natural Science Edition, 2009, 30(3)
Authors:Song Yuqing  Wang Chunhong  Chen Jianmei  Xie Conghua
Affiliation:1.School of Computer Science and Telecommunication Engineering;Jiangsu University;Zhenjiang;Jiangsu 212013;China;2.School of Computer Science and Engineering;Changshu Institute of Technology;Changshu;Jiangsu 215500;China
Abstract:Problem of medical image clustering was studied.A kind of K-EM clustering algorithm based on Gaussian mixture density model was proposed.Human abdominal image data was processed with this algorithm,in order to classify liver,kidney,spleen and other major organs.In this algorithm,abdominal image pixel data was randomly selected,the QAIC information criterion was used to determine the best class number of training samples,and K-means clustering algorithm was used to get initial parameters of this mixture mode...
Keywords:medical image  K-means algorithm  Gaussian mixture density model  QAIC information criteria  EM algorithm  Bayes rule  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号