首页 | 本学科首页   官方微博 | 高级检索  
     

用广义高阶锥方向邻接导数刻画集值优化的超有效解
引用本文:韩倩倩,徐义红,汪涛,涂相求. 用广义高阶锥方向邻接导数刻画集值优化的超有效解[J]. 吉林大学学报(理学版), 2012, 50(6): 1146-1150
作者姓名:韩倩倩  徐义红  汪涛  涂相求
作者单位:南昌大学 数学系, 南昌 330031
基金项目:国家自然科学基金(批准号:10461007);江西省自然科学基金(批准号:2009GZS0021);江西省教育厅科技项目(批准号:GJJ12010)
摘    要:在赋范线性空间中利用广义高阶锥方向邻接导数研究集值优化问题的超有效解. 在近似锥 次类凸假设下, 借助凸集分离定理和Henig扩张锥的性质, 得到了集值优化问题取得超有效元的Fritz John型必要条件.

关 键 词:超有效解  广义m阶C 方向邻接导数  集值优化  
收稿时间:2011-12-30

Super Efficient Solutions of Set-Valued Optimization with Generalized Higher-Order Cone-Directed Adjacent Derivatives
HAN Qian-qian,XU Yi-hong,WANG Tao,TU Xiang-qiu. Super Efficient Solutions of Set-Valued Optimization with Generalized Higher-Order Cone-Directed Adjacent Derivatives[J]. Journal of Jilin University: Sci Ed, 2012, 50(6): 1146-1150
Authors:HAN Qian-qian  XU Yi-hong  WANG Tao  TU Xiang-qiu
Affiliation:Department of Mathematics, Nanchang University, Nanchang 330031, China
Abstract:In normed linear spaces, the super efficient solutions of set-valued optimization were investigated with generalized higher order cone directed adjacent derivatives. Under the assumption of near cone subconvexlikeness, with the help of separate theorem for convex sets and the properties of Henig
dilating cone, the type of Fritz John necessary optimality condition was established for set valued optimization problem to obtain its super efficient elements.
Keywords:super efficient solution  cone directed mth-order generalized adjacent derivative  set valued optimization  
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号