摘 要: | 针对从背景复杂、视角多变、语言形式多样的场景图像中难以准确提取文本信息的问题,提出了一种基于最大稳定极值区域(MSER)和笔画宽度变换(SWT)场景文本提取方法。该方法结合MSER、SWT算法的优点,采用MSER算法的准确检测文字区域,建立文本候选区域,利用SWT算法计算文本候选区域笔画宽度得到候选文本区域的笔画宽度;根据笔画宽度图,利用连通域标记建立笔画宽度连通图,然后根据笔画宽度连通图,建立笔画连通图的启发性规则,删除非文本候选区域,并根据文本的几何特征分析及局部自适应窗口最大类间方差(Otsu)分割,有效提取出自然场景图像中的文本,文本提取的准确率、召回率及综合性能分别为0.74、0.64及0.68。仿真实验结果表明,在文本视角多变,字符大小、尺寸、字体各异的复杂条件下,所提方法具有较好的鲁棒性,适用于多语言和多字体混合的场景文本提取。
|