首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel nonviral nanoparticle gene vector: Poly-L-lysine-silica nanoparticles
Authors:Shiguo Zhu  Hongbin Lu  Juanjuan Xiang  Ke Tang  Bicheng Zhang  Ming Zhou  Chen Tan  Guiyuan Li
Institution:(1) Cancer Research Institute, Xiangya School of Medicine, Central South University, 410078 Changsha, China
Abstract:DNA delivery is a core technology for gene structure and function research as well as clinical settings. The ability to safely and efficiently targeted transfer foreign DNA into cells is a fundamental goal in biotechnology. With the development of nanobiotechnology, nanoparticle gene vectors brought about new hope to reach the goal. In our research, silica nanoparticles (SiNP) were synthesized first in a microemulsion system polyoxyethylene nonylphenyl ether (OP-10)/cyclohexane/ammonium hydroxide, at the same time the effects of SiNP size and its distribution were elucidated by orthogonal analysis; then poly-L-lysine (PLL) was linked on the surface of SiNP by nanoparticle surface energy and electrostatically binding; lastly a novel complex nanomateial—poly-L-lysine-silica nanoparticles (PLL-SiNP) was prepared. The analysis of plasmid DNA binding and DNase I enzymatic degradation discovered that PLL-SiNP could bind DNA, and protect it against enzymatic degradation. Cell transfection showed that PLL-SiNP could efficiently transfer PEGFPC-2 plasmid DNA into HNE1 cell line. These results indicated that PLL-SiNP was a novel nonviral nanoparticle gene vector, and would probably play an important role in gene structure and function research as well as gene therapy.
Keywords:nanoparticle gene vector  silica nanoparticles  poly-L-lysine-silica nanoparticles  synthesis  DNA delivery  cell transfection
本文献已被 万方数据 SpringerLink 等数据库收录!
点击此处可从《中国科学通报(英文版)》浏览原始摘要信息
点击此处可从《中国科学通报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号