摘 要: | 针对多目标粒子群优化算法在求解火力分配过程中容易陷入局部最优的问题,提出一种改进的多目标量子粒子群优化(Multi Objective Quantum Behaved Particle Swarm Optimization, MOQPSO)算法。通过改进编码方式、修改位置更新公式、引入高斯变异和更新外部档案等方法,使该算法适于求解多平台多武器火力分配多目标优化模型。对规模不同的2个作战想定分别采用改进MOQPSO算法和MOPSO算法进行求解。对多目标优化与单目标优化模型的收敛性能进行了比较。仿真结果表明:改进MOQPSO算法比MOPSO算法运算速度提高6倍左右,所求Pareto解的收敛精度更高、多样性更好,验证了所提算法的有效性和优越性。
|