首页 | 本学科首页   官方微博 | 高级检索  
     

基于转移学习的命名实体挖掘技术
引用本文:翟海军,郭勇,郭嘉丰,程学旗. 基于转移学习的命名实体挖掘技术[J]. 上海交通大学学报, 2011, 45(2): 164-0167
作者姓名:翟海军  郭勇  郭嘉丰  程学旗
作者单位:(1. 中国科学技术大学 计算机科学与技术学院, 合肥 230027; 2. 中国科学院计算技术研究所, 北京 100190; 3. 北京系统工程研究所, 北京 100101)
摘    要:研究了针对大规模查询日志中丰富的命名实体的挖掘技术,通过利用Wikipedia数据,结合转移学习方法构建目标类别的分类器.该技术很好地利用了监督学习的优越性能以提高查询日志中命名实体挖掘的准确性,同时也解决了监督学习方法中大规模标注的问题.实验结果表明,基于转移学习的命名实体挖掘技术具有优越的命名实体挖掘性能.

关 键 词:转移学习   命名实体挖掘   正例学习  
收稿时间:2010-03-02

A Named Entity Mining Method Based on Transfer Learning
ZHAI Hai-jun,GUO Yong,GUO Jia-feng,CHENG Xue-qi. A Named Entity Mining Method Based on Transfer Learning[J]. Journal of Shanghai Jiaotong University, 2011, 45(2): 164-0167
Authors:ZHAI Hai-jun  GUO Yong  GUO Jia-feng  CHENG Xue-qi
Affiliation:(1. School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China; 2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;3. Beijing Institute of System Engineering, Beijing 100101, China)
Abstract:This paper addresses the problem of mining named entities from query logs. A novel scheme was introduced based on transfer learning, which trains classifier for target category by leveraging Wikipedia data source. In this way it can greatly make use of supervised learning and also deal with the large scale labeling problem. The experiment results show the effectiveness of the novel scheme based on transfer learning.
Keywords:transfer learning  named entity mining  one class learning  
本文献已被 CNKI 等数据库收录!
点击此处可从《上海交通大学学报》浏览原始摘要信息
点击此处可从《上海交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号