首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates
Authors:Jarosz Daniel F  Godoy Veronica G  Delaney James C  Essigmann John M  Walker Graham C
Institution:Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Abstract:Translesion synthesis (TLS) by Y-family DNA polymerases is a chief mechanism of DNA damage tolerance. Such TLS can be accurate or error-prone, as it is for bypass of a cyclobutane pyrimidine dimer by DNA polymerase eta (XP-V or Rad30) or bypass of a (6-4) TT photoproduct by DNA polymerase V (UmuD'2C), respectively. Although DinB is the only Y-family DNA polymerase conserved among all domains of life, the biological rationale for this striking conservation has remained enigmatic. Here we report that the Escherichia coli dinB gene is required for resistance to some DNA-damaging agents that form adducts at the N2-position of deoxyguanosine (dG). We show that DinB (DNA polymerase IV) catalyses accurate TLS over one such N2-dG adduct (N2-furfuryl-dG), and that DinB and its mammalian orthologue, DNA polymerase kappa, insert deoxycytidine (dC) opposite N2-furfuryl-dG with 10-15-fold greater catalytic proficiency than opposite undamaged dG. We also show that mutating a single amino acid, the 'steric gate' residue of DinB (Phe13 --> Val) and that of its archaeal homologue Dbh (Phe12 --> Ala), separates the abilities of these enzymes to perform TLS over N2-dG adducts from their abilities to replicate an undamaged template. We propose that DinB and its orthologues are specialized to catalyse relatively accurate TLS over some N2-dG adducts that are ubiquitous in nature, that lesion bypass occurs more efficiently than synthesis on undamaged DNA, and that this specificity may be achieved at least in part through a lesion-induced conformational change.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号