首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络的互连权空间的演化方程学习算法
引用本文:顾玉巧 周昌松. 人工神经网络的互连权空间的演化方程学习算法[J]. 南开大学学报(自然科学版), 1997, 30(2): 31-35,47
作者姓名:顾玉巧 周昌松
作者单位:南开大学物理系!天津,300071
基金项目:国家自然科学基金,“非线性攀登项目”资助
摘    要:本文把人工神经网络的互连权视为广义的自旋变量,网络的学习问题看作互连权空间的优化问题,进而将通常在人工神经网络组态空间的连续时间动力学方程组推广到人工神经网络的互连权空间,并在方程组中引入类似Metropolis的MonteCarlo算法机制改进此方程组了以提高寻优能力,提出了一个人工神经网络的演化方程学习算法,该算法在很大程度上摆脱了局域极值的束缚,得到最优或接近最优的互连权,本文集中研究单层反

关 键 词:神经网络 演化方程 互连权空间 学习算法

EVOLUTION EQUATION LEARNING ALGORITHM OF ARTIFICIAL NEURAL NETWORKS
Gu Yuqiao,Zhou Changsong, Huang Wuqun, Chen Tianlun. EVOLUTION EQUATION LEARNING ALGORITHM OF ARTIFICIAL NEURAL NETWORKS[J]. Acta Scientiarum Naturalium University Nankaiensis, 1997, 30(2): 31-35,47
Authors:Gu Yuqiao  Zhou Changsong   Huang Wuqun   Chen Tianlun
Abstract:n this paper the synaptic couplings of artificial neural networks are viewed as a general spin variable, considering the learning of the network as an optimal problem in synapticspace. As a result, the continuous-time dynamical coupled equations of pattern space ofneural network can be extended to synaptic space. An evolution equation learning algorithm is proposed with introducing a scheme similar to the Monte Carlo method proposedby Metropolis into these equations to improve the optimization ability. With this algorithm, the system can escape from the difficult of local extrema of the energy function andreach an optimal solution or its good approximations. This paper concentrate on singlelayered recurrent artificial neural networks. We use a quadric energy function in synapticcoupling space. We have studied the critical storage capacity ac of the networks whosesynaptic couplings are obtained with our algorithm. Computer simulation show that ac approximates to pseudo-inverse models when neuron number N is small and decreases slowlywith the increasing of N.
Keywords:artificial neural networks  evolution equation  Monte Carlo algorithm
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号