首页 | 本学科首页   官方微博 | 高级检索  
     

有多余坐标完整力学系统的形式不变性与非Noether守恒量
引用本文:张毅. 有多余坐标完整力学系统的形式不变性与非Noether守恒量[J]. 华中师范大学学报(自然科学版), 2005, 39(1): 35-38
作者姓名:张毅
作者单位:苏州科技学院,土木工程系,苏州,215011
基金项目:江苏省青蓝工程基金和江苏省高校自然科学基金资助项目(01KJD130002).
摘    要:研究有多余坐标完整力学系统的形式不变性与非Noether守恒量.首先,建立了系统的运动微分方程,给出了系统在仅依赖于广义坐标的无限小变换下的形式不变性和Lie对称性的定义和判据,讨论了形式不变性与Lie对称性的关系;其次,给出了形式不变性导致非Noether守恒量的条件及守恒量的形式;最后,举例说明结果的应用.

关 键 词:分析力学  多余坐标  形式不变性  Lie对称性  守恒量
文章编号:1000-1190(2005)01-0035-04

Form invariance and non-Noether conserved quantity for holonomic mechanical systems with remainder coordinates
ZHANG Yi. Form invariance and non-Noether conserved quantity for holonomic mechanical systems with remainder coordinates[J]. Journal of Central China Normal University(Natural Sciences), 2005, 39(1): 35-38
Authors:ZHANG Yi
Abstract:This paper studies the form invariance and the non-Noether conserved quantity of the holonomic mechanical systems with remainder coordinates. Firstly, the differential equations of motion of the systems are established. The definitions and criterions of the form invariance and the Lie symmetry of the systems under the infinitesimal transformations which only depend upon the generalized coordinates are given, and the relation between the form invariance and the Lie symmetry is discussed. Secondly, the condition under which the form invariance can lead up to a non-Noether conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.
Keywords:analytical mechanics  remainder coordinate  form invariance  Lie symmetry  conserved quantity
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《华中师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华中师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号