摘 要: | 作为类乘法模和类余乘法模的真推广,引入了类乘法半模和类余乘法半模的概念.设S是交换半环,M是S-半模.若对M的任意非零子半模N,有AnnS(M)?AnnS(M/N),则称M是类乘法S-半模;若对任意真subtractive子半模N,有AnnS(M)?AnnS(N),则称M是类余乘法S-半模.讨论了类乘法半模与类余乘法半模的性质;证明了M是次S-半模当且仅当对M的任意真subtractive子半模N,AnnS(M/N)=AnnS(M)当且仅当P=AnnS(M)是S的素理想且M是可除S/P-半模;证明了类乘法半模是semi-hopfian半模且类余乘法半模是semicohopfian半模.
|