首页 | 本学科首页   官方微博 | 高级检索  
     

Multi-PCA模型过程监测方法
引用本文:马立玲,王军政,宋月. Multi-PCA模型过程监测方法[J]. 北京理工大学学报, 2004, 24(1): 64-68
作者姓名:马立玲  王军政  宋月
作者单位:北京理工大学,信息科学技术学院自动控制系,北京,100081;北京理工大学,信息科学技术学院自动控制系,北京,100081;北京理工大学,信息科学技术学院自动控制系,北京,100081
摘    要:为了研究具有大量高度相关的过程变量的非线性系统的故障诊断问题,提高用于故障检测和诊断的PCA模型的精度,提出一种基于多PCA模型的方法.设计的基于超椭球面的分类规则用来对过程数据分类,建立的多PCA模型用于过程监测,SOFM网络用于故障诊断.发酵过程中的仿真结果表明,多PCA模型方法能确定合理的受控限,提高了过程监测的精度,验证了方法的可行性和有效性.

关 键 词:过程监测  故障诊断  主元分析  SOFM网络  发酵过程
文章编号:1001-0645(2004)01-0064-05
收稿时间:2003-04-21
修稿时间:2003-04-21

A Process Monitoring Method Based on Multi-PCA Models
MA Li-ling,WANG Jun-zheng and SONG Yue. A Process Monitoring Method Based on Multi-PCA Models[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2004, 24(1): 64-68
Authors:MA Li-ling  WANG Jun-zheng  SONG Yue
Affiliation:Department of Automatic Control, School of Information Science and Technology, Beijing Institute of =Technology, Beijing100081, China;Department of Automatic Control, School of Information Science and Technology, Beijing Institute of =Technology, Beijing100081, China;Department of Automatic Control, School of Information Science and Technology, Beijing Institute of =Technology, Beijing100081, China
Abstract:In order to solve the problem of fault diagnosis for nonlinear systems with correlative process variables and improve the precision of PCA models for fault detection and fault diagnosis, a fault diagnosis method based on multi-PCA models is presented. Hyper-ellipsoid bound clustering rules are adopted to classify the process data, multi-PCA models are then built up for process monitoring. SOFM network is used in fault diagnosis. Simulation results in fermentation process show that the method can give reasonable control limits and improve the precision in process monitoring, which illustrates the feasibility and effectiveness of the proposed method.
Keywords:process monitoring  fault diagnosis  PCA  SOFM network  fermentation process
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号