首页 | 本学科首页   官方微博 | 高级检索  
     

基于AR模型的非线性目标跟踪自适应算法
引用本文:钱华明,陈亮,杨峻巍. 基于AR模型的非线性目标跟踪自适应算法[J]. 华中科技大学学报(自然科学版), 2012, 40(9): 52-56
作者姓名:钱华明  陈亮  杨峻巍
作者单位:哈尔滨工程大学自动化学院,黑龙江哈尔滨,150001
基金项目:国家自然科学基金资助项目(60904087)
摘    要:针对Jerk模型中各参数设置不合理对跟踪系统所造成的影响,提出一种基于自回归(AR)模型的Jerk参数自适应改进算法,实时估计并调整系统的参数,提高系统的跟踪精度及稳定性;同时,针对非线性目标跟踪系统扩展卡尔曼滤波算法(EKF)计算复杂跟踪精度低,提出采用平方根容积卡尔曼滤波器(SRCKF)进行状态估计,保证跟踪系统的精度和鲁棒性,为Jerk模型参数自适应提供良好条件.仿真结果验证了算法的有效性.

关 键 词:机动目标跟踪  非线性滤波  自回归(AR)模型  Jerk模型  平方根容积卡尔曼滤波器(SRCKF)  自适应算法

Adaptive algorithm of nonlinear target tracking based on AR model
Qian Huaming Chen Liang Yang Junwei. Adaptive algorithm of nonlinear target tracking based on AR model[J]. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.NATURE SCIENCE, 2012, 40(9): 52-56
Authors:Qian Huaming Chen Liang Yang Junwei
Affiliation:Qian Huaming Chen Liang Yang Junwei(College of Automation,Harbin Engineering University,Harbin 150001,China)
Abstract:Due to the influence of setting up the unreasonable parameters about Jerk model,an improved adaptive algorithm of parameters based on auto regressive(AR) model was proposed in this paper.The model parameters were estimated online and then the target tracking system was amended.The accuracy and stability could be enhanced effectively.Meanwhile,in order to deal with the problems of extended Kalman filter(EKF) that it was complexly computed with low accuracy in state estimation,an improved filter square-root cubature Kalman filter(SRCKF) was present,which enhanced the algorithm numerical stability,guaranteed positive semi-definiteness of the state covariance,and also increased the filtering accuracy,providing a fitness advantage for Jerk parameters adaptation.At last,simulation results verified the effective of this algorithm.
Keywords:maneuvering target tracking  nonlinear filter  auto regressive(AR) model  Jerk model  square-root cubature Kalman filter(SRCKF)  adaptive algorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号