首页 | 本学科首页   官方微博 | 高级检索  
     

模糊聚类的侧扫声纳图像分割算法
引用本文:王雷,叶秀芬,王天. 模糊聚类的侧扫声纳图像分割算法[J]. 华中科技大学学报(自然科学版), 2012, 40(9): 25-29
作者姓名:王雷  叶秀芬  王天
作者单位:哈尔滨工程大学自动化学院,黑龙江哈尔滨,150001
基金项目:国家高技术研究发展计划资助项目(2007AA04Z246,2011AA09A106)
摘    要:针对侧扫声纳图像的特点,利用二维经验模态分解(BEMD)将图像分解成若干固有模态函数(IMF)和1个余量.分析了侧扫声纳图像背景区的图像频率特征,通过增强目标和阴影的特征信息降低噪声的影响.提取图像的高斯马尔可夫纹理(GMRF),用来表达图像像素点间的空间关系,以减少图像的误分割.利用BEMD和GMRF改进模糊C均值聚类算法,提出了新的聚类准则和距离函数,形成一种新的模糊聚类算法.利用该算法对不同的侧扫声纳图像进行分割,并将分割结果与其他典型的聚类算法的分割结果进行比较,验证了该算法的抗噪性和准确性.

关 键 词:声纳图像  频率  模糊聚类  二维经验模态分解(BEMD)  固有模态函数(IMF)  高斯马尔可夫纹理(GMRF)

Segmentation algorithm of fuzzy clustering on side scan sonar image
Wang Lei Ye Xiufen Wang Tian. Segmentation algorithm of fuzzy clustering on side scan sonar image[J]. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.NATURE SCIENCE, 2012, 40(9): 25-29
Authors:Wang Lei Ye Xiufen Wang Tian
Affiliation:Wang Lei Ye Xiufen Wang Tian(College of Automation,Harbin Engineering University,Harbin 150001,China)
Abstract:Aiming at the characteristics of background areas in the sonar imagery,the side scan sonar image was decomposed into several intrinsic mode functions(IMFs) and a residue with the bidimensional empirical mode decomposition(BEMD).Features of the targets and shadows were enhanced and the noise was reduced.In order to use the spatial relationships between pixels,Gauss Markov random field(GMRF) was used to extract the local texture,and the mis-segmentation was reduced.Finally,a new fuzzy clustering algorithm was proposed,and its clustering criterion and distance function were rewritten.By the comparison with other traditional clustering methods in sonar image segmentation field,the proposed algorithm was proved to be superior to others.
Keywords:sonar image  frequency  fuzzy clustering  bidimensional empirical mode decomposition(BEMD)  intrinsic mode functions(IMFs)  Gauss Markov random field(GMRF)
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号