首页 | 本学科首页   官方微博 | 高级检索  
     

融合节点影响力与多标签传播的重叠社区发现算法
引用本文:陈荣旺,江彩英,郭 昆. 融合节点影响力与多标签传播的重叠社区发现算法[J]. 福州大学学报(自然科学版), 2023, 51(4): 451-458
作者姓名:陈荣旺  江彩英  郭 昆
作者单位:武夷学院,南平市气象局,福州大学
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目),福建省自然科学基金资助项目(面上项目,重点项目,重大项目)
摘    要:重叠社区发现是复杂网络分析研究的重要目标之一。针对传统多标签传播算法存在的社区发现结果具有随机性、不稳定性,以及忽视节点影响力对标签传播的影响等问题,提出一种基于节点影响力与多标签传播的能够生成稳定社区的重叠社区发现算法。算法在节点影响力的计算、排序和核心节点识别基础上,通过邻居节点初始标签的再处理和基于平衡系数的节点标签异步更新策略,实现复杂网络重叠社区的有效识别。在真实数据集和人工数据集上的实验综合表明,算法性能优于各对比算法,适用于大规模复杂网络。

关 键 词:复杂网络  重叠社区  多标签传播  节点影响力
收稿时间:2023-03-06
修稿时间:2023-04-07

Overlapping community discovery algorithm integrating node influence and multi-label propagation
CHEN Rongwang,JIANG Caiying,GUO Kun. Overlapping community discovery algorithm integrating node influence and multi-label propagation[J]. Journal of Fuzhou University(Natural Science Edition), 2023, 51(4): 451-458
Authors:CHEN Rongwang  JIANG Caiying  GUO Kun
Affiliation:Wuyi University,Nanping Meteorological Bureau,Fuzhou University
Abstract:The discovery of overlapping community is one of the important goals of complex network analysis. Traditional multi-label propagation algorithms suffer from issues such as randomness and instability of algorithm results, and the ignorance of the influence of node influence on label propagation. To address these issues, we propose an overlapping community discovery algorithm that can generate stable communities based on node influence and multi-label propagation. Based on node influence calculation, ranking and core node recognition, our algorithm realizes the effective recognition of overlapping community in complex networks, by reprocessing initial labels of neighbor nodes and updating node labels asynchronously based on balance coefficient. Experimental results on real data sets and artificial data sets show that the performance of our algorithm is better than that of other comparison algorithms and suitable for large-scale complex networks.
Keywords:complex network   overlapping community   multi-label propagation   node influence
点击此处可从《福州大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《福州大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号