基于小波变换的时间序列聚类 |
| |
摘 要: | 针对传统以欧氏距离为相似性度量的K-均值聚类算法应用于时间序列数据上存在的时间轴偏移敏感性问题及以动态时间轴弯曲距离为相似性度量的高计算复杂性问题,提出基于小波变换的动态时间弯曲距离作为相似性度量方法,根据提取的小波低频系数与原时间序列之间的低能量差异来选择小波变换的尺度,能保证选取的特征在拥有尽量低的维数的同时保留时间序列主要信息.实验结果显示,基于小波动态时间弯曲距离的K均值聚类比基于欧氏距离的K均值聚类效果好,运行速度比动态弯曲距离快.
|
本文献已被 CNKI 等数据库收录! |
|