一类约化代数的自伴条件 |
| |
作者姓名: | 代正贵 |
| |
摘 要: | 一、问题和主要结果复Hilbert空间中的线性流型M做算子值域,如果它是某个Hilbert空间H_1~-到H中的有界线性算子的值域。设u为H上的算子代数,如果,算子值域M满足AM(?)M,则说M是代数u的不变算子值域。关于不变算子值域,在迁移代数问题中已经有很多研究,C·Foias在[1]中证明了:迁移代数u(即没有非平常的不变子空间的算子代数),如果没有非平常的算子值域,则u在B(H)中强稠。H·Rajavi发展了C·Foias的结果,在[3]中证明了:迁移代数u,如果它的所有非零不变算子值域均含有同一个非零
|
本文献已被 CNKI 等数据库收录! |
|