首页 | 本学科首页   官方微博 | 高级检索  
     

基于马尔可夫链和模糊聚类的电力系统短期负荷预测
引用本文:任雪梅,陈逊,徐腊元. 基于马尔可夫链和模糊聚类的电力系统短期负荷预测[J]. 北京理工大学学报, 2004, 24(5): 416-418
作者姓名:任雪梅  陈逊  徐腊元
作者单位:1. 北京理工大学,信息科学技术学院自动控制系,北京,100081
2. 中国电力科学研究院,农电所,北京,100085
基金项目:国家重点基础研究发展计划(973计划)
摘    要:提出一种马尔可夫链和模糊聚类相结合的预测方法,针对时间序列中出现的各种随机现象,分别建立数学模型.对样本所属状态采用模糊划分,使分类更符合实际情况;利用马尔可夫链对研究对象做状态分析,根据状态转移进行预测.该方法在电力系统负荷预测中使用,提高了算法的全局最优性能.在时间序列呈现较强的随机性时,本算法具有明显的优越性.仿真结果表明,对于各种扰动因素,预测误差可控制在3.5%以内.

关 键 词:模糊聚类  马尔可夫链  组合预测  马尔可夫链  模糊聚类  电力系统  短期负荷预测  Fuzzy Clustering  Markov Chain  Combination  Based  Load Forecasting  Term  Short  System  可控制  预测误差  扰动因素  仿真结果  随机性  最优性能  算法  使用
文章编号:1001-0645(2004)05-0416-04
收稿时间:2002-01-04

Power System Short Term Load Forecasting Based upon a Combination of Markov Chain and Fuzzy Clustering
REN Xue-mei,CHEN Xun and XU La-yuan. Power System Short Term Load Forecasting Based upon a Combination of Markov Chain and Fuzzy Clustering[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2004, 24(5): 416-418
Authors:REN Xue-mei  CHEN Xun  XU La-yuan
Affiliation:REN Xue-mei~1,CHEN Xun~1,XU La-yuan~2
Abstract:A new method based on the combination of fuzzy clustering and Markov chain models is presented. To different types of random phenomena in time series, several functions are built up respectively. State analysis of an object is carried out using the Markov chain, while fuzzy clustering is employed to the states of samples to suit the real case. Then according to state transfer, the load change is predicted. The new algorithm which is used in load forecasting reaches the global optimum, when the time series have strongly properties of randomness, the algorithm works well. Simulation results show that the error can be limited to the level of 3.5%.
Keywords:fuzzy clustering  Markov chain  combined forecasting
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号