首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogenation of nanostructured semiconductors for energy conversion and storage
Authors:Jingxia Qiu  Jacob Dawood  Shanqing Zhang
Institution:1. Centre for Clean Environment and Energy, Environmental Futures Research Institute, Gold Coast, QLD, 4222, Australia
2. Griffith School of Environment, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
Abstract:Nanostructured semiconductors have been researched intensively for energy conversion and storage applications in recent decades. Despite of tremendous findings and achievements, the performance of the devices resulted from the nanomaterials in terms of energy conversion efficiency and storage capacity needs further improvement to become economically viable for subsequent commercialization. Hydrogenation is a simple, efficient, and cost-effective way for tailoring the electronic and morphological properties of the nanostructured materials. This work reviews a series of hydrogenated nanostructured materials was produced by the hydrogenation of a wide range of nanomaterials. These materials with improved inherent conductivity and changed characteristic lattice structure possess much enhanced performance for energy conversion application, e.g., photoelectrocatalytic production of hydrogen, and energy storage applications, e.g., lithium-ion batteries and supercapacitors. The hydrogenation mechanisms as well as resultant properties responsible for the efficiency improvement are explored in details. This work provides guidance for researchers to use the hydrogenation technology to design functional materials.
Keywords:Semiconductor  Hydrogenation  Lithium-ion battery  Supercapacitor  Hydrogenproduction
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号