首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化肌电特征的无声语音信号识别
引用本文:王旭,贾雪琴,李景宏,杨丹. 基于优化肌电特征的无声语音信号识别[J]. 东北大学学报(自然科学版), 2006, 27(10): 1095-1097. DOI: -
作者姓名:王旭  贾雪琴  李景宏  杨丹
作者单位:东北大学,信息科学与工程学院,辽宁,沈阳,110004;东北大学,信息科学与工程学院,辽宁,沈阳,110004;东北大学,信息科学与工程学院,辽宁,沈阳,110004;东北大学,信息科学与工程学院,辽宁,沈阳,110004
摘    要:提出了一种基于遗传算法(GA)和fisher投影的最佳可鉴别基的求解方法.将原始特征向量向着最佳可鉴别基投影可得到具有最佳可分性的新的特征向量.从颧肌和二腹肌前腹的皮肤表面检测无声发出6个汉语元音的表面肌电信号(SEMG),以该肌电信号的AR模型系数、倒谱系数和美尔倒谱系数作为原始特征向量.使用遗传算法找出了原始特征的次优组合,并组成新的特征向量.将GA找出的次优特征向量向着fisher最佳可鉴别基投影可得到最佳鉴别特征向量.最后用改进的BP神经网络作为分类器得到了较好的识别效果.

关 键 词:无声语音识别  Fisher准则  肌电特征  遗传算法  BP神经网络
文章编号:1005-3026(2006)10-1095-03
收稿时间:2005-12-09
修稿时间:2005-12-09

Unvoiced-Speech-Signal Recognition Based on Optimizing SEMG Signal Features
WANG Xu,JIA Xue-qin,LI Jing-hong,YANG Dan. Unvoiced-Speech-Signal Recognition Based on Optimizing SEMG Signal Features[J]. Journal of Northeastern University(Natural Science), 2006, 27(10): 1095-1097. DOI: -
Authors:WANG Xu  JIA Xue-qin  LI Jing-hong  YANG Dan
Affiliation:(1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
Abstract:Based on genetic algorithms (GA) and Fisher projection,a method is proposed to solve the optimal discriminant basis. New optimal eigenvector separability is obtained by projecting the original eigenvector to the optimal discriminant basis. The surface electromyogram (SEMG) signal of six unvoiced Chinese vowels are detected from the skin surface of zygomaticus major and anterior belly of the digastric,with AR model coefficients,cepstral coefficients and MFCC coefficients of SEMG signal taken as the original eigenvector. And the suboptimal eigenvector is found out from the original one by GA. Projecting the suboptimal eigenvector selected by GA to optimal discriminant basis,the optimal discriminant eigenvector is given. Experiments show that the improved BP neural network has preferable classification performance with optimal discriminant features.
Keywords:unvoiced speech recognition  Fisher discriminant criterion  SEMG(surface electromyogram) signal features  GA(genetic algorithms)  BP neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号