首页 | 本学科首页   官方微博 | 高级检索  
     

基于LTS优化图像切边线性回归分类的人脸识别研究
引用本文:邵丹. 基于LTS优化图像切边线性回归分类的人脸识别研究[J]. 科学技术与工程, 2014, 14(18)
作者姓名:邵丹
作者单位:铁道警察学院
基金项目:河南省教育厅科学技术研究重点项目(13A520504)
摘    要:针对现实人脸识别中由于伪装(如围巾、太阳镜和头发)或其它物体引起的面部遮挡而严重影响识别率的问题,提出了一种基于最小截平方和的图像切边线性回归分类算法。首先,使用一个鲁棒性强的估计量检测并裁剪查询样本、训练样本中受污染的像素点;然后,利用线性回归分类算法对图像进行切边;最后,利用LTS计算出规范化的重构误差。实验结果表明,相比其它几种回归分类算法,本文算法取得了更高的识别率,同时大大降低了训练总完成时间。

关 键 词:人脸识别;鲁棒性;最小截平方和;线性回归
收稿时间:2014-01-25
修稿时间:2014-02-24

Research of Image Trimming LRC Optimized by LTS in Face Recognition
shaodan. Research of Image Trimming LRC Optimized by LTS in Face Recognition[J]. Science Technology and Engineering, 2014, 14(18)
Authors:shaodan
Abstract:There are usually facial occlusion generated by masks such as scarf in truly face recognition, for the issue that the mask will impact recognition accuracy, linear regression classification algorithm with image trimmed based on least trimmed squares is proposed. Firstly, a robust estimator is used to cut polluted pixels of query and training samples out. Then, linear regression classification algorithm is used to trim images. Finally, reconstruction error is compute. Experimental results show that proposed algorithm has higher recognition accuracy and less training time than several advanced regression classification algorithms.
Keywords:Face recognition   Robust   Least trimmed squares   Linear regression  
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号