首页 | 本学科首页   官方微博 | 高级检索  
     

甘蔗收获机剥叶性能评价中权重确定的BP网络方法
引用本文:麻芳兰,何玉林,李尚平,蒙艳玫,梁式. 甘蔗收获机剥叶性能评价中权重确定的BP网络方法[J]. 广西大学学报(自然科学版), 2005, 30(3): 233-237
作者姓名:麻芳兰  何玉林  李尚平  蒙艳玫  梁式
作者单位:广西大学,机械工程学院,广西,南宁,530004;重庆大学,机械工程学院,重庆,400044;重庆大学,机械工程学院,重庆,400044;广西工学院,广西,柳州,545006;广西大学,机械工程学院,广西,南宁,530004
基金项目:国家自然科学基金(No.50365001).
摘    要:为了解决甘蔗收获机械剥叶性能评价中权重确定的关键问题,构建了三层前馈BP神经网络,并采用正交试验数据构造训练样本,以提高训练速度及精度.在此基础上通过运用经训练后的BP神经网络的各连接权值,确定了反映各目标因素对评价指标影响程度的权重值.运用BP神经网络方法可确保经确定的权重能如实地及映出各目标因素对评价指标的重要程度.

关 键 词:甘蔗收获机械  剥叶性能  BP神经网络  权重  正交试验
文章编号:1001-7445(2005)03-0233-05
收稿时间:2005-04-01
修稿时间:2005-08-16

Application of the BP neural network in the determination of the multi-index weights of the cleaning performance of sugarcane harvester
MA Fang-lan,HE Yu-lin,LI Shang-ping,MENG Yan-mei,LIANG Shi. Application of the BP neural network in the determination of the multi-index weights of the cleaning performance of sugarcane harvester[J]. Journal of Guangxi University(Natural Science Edition), 2005, 30(3): 233-237
Authors:MA Fang-lan  HE Yu-lin  LI Shang-ping  MENG Yan-mei  LIANG Shi
Abstract:A three-layer-feedforward BP neural network is investigated in order to solve the key problem of the determination of weights in the evaluation performance of the cleaning performance of the sugarcane harvester. The training samples of the BP neural network are made up of the orthogonal experimental data to enhance the training speed and precision. And then the connecting weights of the trained BP neural network are used to compute the weights of the target factors on the evaluation indexes. The results show that the weights determined by the BP neural network can truthfully reflex the importance of the target factors on the evaluation indexes.
Keywords:sugarcane harvester   cleaning performance   BP neural network   weight   orthogonal experiment
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号