基于考虑误差修正的非线性自适应权重组合模型的光伏发电功率预测 |
| |
作者姓名: | 陈德余 张玮 王辉 |
| |
作者单位: | 1. 齐鲁工业大学(山东省科学院)信息与自动化学院;2. 山东大学电气工程学院 |
| |
基金项目: | 国家重点研发计划项目(2018YFE0208400); |
| |
摘 要: | 为了提高光伏电站光伏发电功率预测精度,解决极限梯度提升模型、长短期记忆模型2种传统单一模型及传统组合模型极限梯度提升-长短期记忆模型的光伏发电功率预测结果滞后、预测效果易突变、预测误差较大、线性拟合性较差等不足,基于极限梯度提升算法、长短期记忆算法和线性自适应权重,提出一种考虑误差修正的非线性自适应权重极限梯度提升-长短期记忆模型进行光伏发电功率预测;分别使用极限梯度提升算法和长短期记忆算法训练得到2种单一模型,将2种单一模型的初步预测值和真实值组成新的训练数据集,利用神经网络算法训练所提出的模型,对2种单一模型的初步预测值分配自适应权重系数,并根据训练时所提出模型的预测值大小分段统计预测误差的分布,预测时根据所提出模型的预测值在预测结果的基础上累加误差均值从而进行误差修正,进一步提高所提出模型的预测精度;利用Python语言分别对所提出的模型、传统组合模型和2种传统单一模型在晴天、阴天和雨天的光伏发电功率预测性能进行仿真。结果表明:与极限梯度提升-长短期记忆模型、极限梯度提升模型、长短期记忆模型相比,所提出模型的均方根误差分别减小28.57%、 39.39%、 49.79%,平均绝对...
|
关 键 词: | 光伏发电 功率预测 自适应权重 误差修正 极限梯度提升算法 长短期记忆算法 |
|