首页 | 本学科首页   官方微博 | 高级检索  
     

分组训练卷积字典的图像去噪算法
引用本文:张膑,张运杰,白明明. 分组训练卷积字典的图像去噪算法[J]. 科学技术与工程, 2021, 21(6): 2379-2386. DOI: 10.3969/j.issn.1671-1815.2021.06.035
作者姓名:张膑  张运杰  白明明
作者单位:大连海事大学理学院,大连116026
摘    要:卷积稀疏编码(convolutional sparse coding,CSC)这一全局模型因字典的特殊结构而受到广泛关注,其中卷积字典学习算法(slice-based dictionary learning,S-BCSC)是最为有效的CSC模型优化算法.虽然S-BCSC算法非常有效,但算法在应用中对整幅图像只使用一个固...

关 键 词:稀疏表示  稀疏编码  字典学习  卷积字典学习  卷积稀疏编码
收稿时间:2020-06-02
修稿时间:2020-11-23

Image denoising algorithm based on group training convolution dictionary
Zhang Bin,Zhang Yunjie,Bai Mingming. Image denoising algorithm based on group training convolution dictionary[J]. Science Technology and Engineering, 2021, 21(6): 2379-2386. DOI: 10.3969/j.issn.1671-1815.2021.06.035
Authors:Zhang Bin  Zhang Yunjie  Bai Mingming
Affiliation:Department of Mathematics, Dalian Maritime University,,Department of Mathematics, Dalian Maritime University
Abstract:Convolutional sparse coding (CSC) is a global model that has received widespread attention due to the special structure of the dictionary. Among them, the convolution dictionary learning algorithm (S-BCSC) proposed by Elad is the most effective CSC model optimization algorithm. Although the S-BCSC algorithm is very effective, the algorithm uses only a fixed-size dictionary for the entire image in application, but this is not conducive to the accurate description of image information. In order to overcome this shortcoming, this paper discusses how to determine the convolution dictionary size according to the image size, and proposes an image denoising algorithm based on grouping training convolution dictionary combined with sparse representation dictionary learning algorithm. The new algorithm first divides the redundant image blocks into three categories according to smoothness, texture, and edge; then determines the size of the convolution dictionary to be trained for each category; and finally completes the dictionary learning and image denoising process according to the S-BCSC algorithm. It can be seen from the experimental results that the proposed algorithm has improved image quality and clarity compared to the original S-BCSC algorithm.
Keywords:sparse  representations, sparse  coding, dictionary  learning, convolution  dictionary learning, convolutional  sparse coding,
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号