首页 | 本学科首页   官方微博 | 高级检索  
     

一类非线性中立双曲型偏泛函微分方程的振动性
引用本文:林文贤. 一类非线性中立双曲型偏泛函微分方程的振动性[J]. 安徽大学学报(自然科学版), 2011, 0(3)
作者姓名:林文贤
作者单位:韩山师范学院数学与应用数学系;
基金项目:广东省自然科学基金资助项目(8151009001000044)
摘    要:研究一类多滞量的非线性中立双曲型偏泛函微分方程的振动性,借助广义Riccati变换和微分不等式技巧,获得这类方程分别在Robin、Dirichlet边值条件下所有解振动的若干新的充分性条件,表明其振动是由时滞量引起的,所得结果推广了最近文献的相关结果.

关 键 词:双曲型  偏泛函微分方程  振动性  偏差变元

Oscillation of certain nonlinear neutral Hyperbolic partial functional differential equations
LIN Wen-xian. Oscillation of certain nonlinear neutral Hyperbolic partial functional differential equations[J]. Journal of Anhui University(Natural Sciences), 2011, 0(3)
Authors:LIN Wen-xian
Affiliation:LIN Wen-xian (Departent of Mathematics and Applied Mathematics,Hanshan Normal University,Chaozhou 521041,China)
Abstract:In this article,the oscillation of a class of nonlinear neutral hyperbolic partial differential equations with deviating arguments is studied.By employing the generalized Riccati tansformation and the technique of differential inequalities,some new suffcient conditions for oscillaton of all solutions of such equations are obtained under Robin and Dirichlet boundary value conditions.The results fully indicate that the oscillation is caused by delay.The results generlize some of the lastest results.
Keywords:Hyperbolic  partial functional differential equation  oscillation  deviating arguments  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号